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Abstract 
 
This note revisits the issue of forecasting changes in inflation using non-linear non-
parametric methods.  The results indicate the presence of threshold effects in the 
relationship between the information in the term structure and changes in the rate of 
inflation. 
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1. INTRODUCTION 
 
 

Central bankers across North America have adopted targets for short-term interest 

rates as their mechanism for implementing market-conditioning monetary policy. Recent 

history indicates that there is substantial information conveyed to markets through 

changes in targets for the US federal funds rate, as well as the target band for the 

overnight financing rate set by the Bank of Canada.  Whether these shifts in the target 

rate or the target band are in response to market conditions, or the final result of 

“watchful waiting” as might have been suggested by Poole (2001), they are ultimately 

aimed at sheltering the economy from the vagaries of the business cycle.   

 

One might wonder whether recent interest rate reductions in the face of eroding 

business confidence were inconsistent with the wisdom of setting monetary conditions to 

provide a low and stable rate of inflation in the long run.  This is particularly true given 

that the inflation rate appeared to be near the upper end of the “acceptable range” for 

most central bankers in the early part of this century.  Indeed, during the unprecedented 

expansion of the 1990s conventional reasoning suggested that increases in interest rates 

were required to maintain inflation within its target range.  Now that interest rates have 

fallen to historic lows and appear “wobbly”, one might wonder if demand pressures will 

re-ignite and push inflation further into the danger zone.   

 

In a series of papers, Mishkin (1990a, 1990b, 1991) employed Fisher equations to 

demonstrate that the slope of the term structure could explain changes in the inflation 

rate.  During the expansion of the 1990s, many economists believed that an increase in 
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the slope of the term structure would restrain inflation: it was possible to maintain a low 

and stable inflation rate, thereby generating the associated benefits. 

 

Tkacz (2000) revisited this issue to determine whether there were non-linearities 

in the relationship between the slope of the term structure and changes in the inflation 

rate. This was justified by appealing to evidence suggesting asymmetric effects of 

monetary policy either within the context of a non-linear Phillips curve, or more 

generally within a non-linear model of investment and banking behaviour.  Using neural 

network models, Tkacz (2000) demonstrated that a substantial tightening of the term 

structure was required to maintain changes in the inflation rate at low and stable levels 

for all policy horizons. 

 

The purpose of this paper is to revisit the data to determine whether an alternative 

approach to modelling provides a similar result.  The findings suggest that there are 

threshold effects in the link between changes in inflation and interest rate spreads and that 

a reduction in the spread does not uniformly reduce the inflation rate over time.   This 

suggests that monetary policies aimed at maintaining low and stable inflation need to be 

set with a view to the presence and location of these threshold effects. 
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2. CHANGES IN INFLATION AND THE TERM STRUCTURE ON MARS 

 

 The problem facing any modeller is to determine the fundamental relationship 

between a dependent variable and a vector of predictors, expressed by X.1 Specifically, 

the question is how best to capture the functional form f{.} in equation (1): 

   Y = f { X } +  ε      (1) 

where ε captures the departure of the dependent variable (Y) from the equilibrium 

relationship linking X to Y.  In the present context, Y denotes the change in the inflation 

rate at time t ( Βt
M- Βt

N ), while X represents the difference between the M-period 

nominal interest rate and the N-period nominal interest rate  ( It
M- It

N ) at time t.2 

 

 The idea behind local non-parametric modeling is to allow for a potentially non-

linear relationship over different ranges of X. Friedman (1991a, 1991b) introduced the 

multivariate adaptive regression splines (MARS) approach of using smoothing splines to 

fit the relationship between a set of predictors and a dependent variable.  By requiring the 

curve segments to be continuous (so that first and second derivatives are non-zero), one 

obtains a very smooth line that can capture “shifts” in the relationship between variables.  

These shifts occur at locations designated as “knots”, and provide for a smooth transition 

between “regimes”.  The MARS algorithm searches over all possible knot locations, 

across all variables and all interactions among all variables.  It does so through the use of 

                                                 
1  This section draws heavily on work presented by Sephton (2001). 
 
2 The M-period inflation rate is defined as  log ( Pt+1/Pt)*(1200/M) where M takes on values 

3,6,9,12,36,60, and 120.  The yield spreads and inflation changes always involve the difference 
between the long-run and the short-run. Hence ( It

120- It
3 ) denotes the difference between the 

yields on 10 year government bonds and three month treasury bills. 
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combinations of variables called “basis functions”, which are similar to variable 

combinations created by using principal components analysis.  Once MARS determines 

the optimal number of basis functions and knot locations, a final least squares regression 

provides estimates of the fitted model on the selected basis functions. 

 

  When modeling the relationship between a single predictor Xt and the dependent 

variable Yt, a general model might take the form 

                         M  

        Yt      =     Σ      αk   Bk (Xt)     +   ε t                          (2) 

                       k=1 

 

where  Bk (Xt)  is the kth basis function of Xt.  Basis functions can be highly non-linear 

transformations of Xt, but note that Yt is a linear (in the parameters) function of the basis 

functions.   Estimates of the parameters αk are chosen by minimizing the sum of squared 

residuals from equation (2).  The advantage of MARS is in its ability to estimate the basis 

functions so that both the additive and the interactive effects of the predictors are allowed 

to determine the response variable.   

 

 MARS identifies the knot locations that most reduce the sum of squared residuals.  

For example, with a single predictor the sum of squared residuals would be 
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     N                    Q                  K 

    Σ    {   Yt    -   Σ bj Xt j    -  Σ   ak  ( Xt - tk ) +Q  } 2   (3) 

    i=1                 j=0               k=1  

 

where bj and ak are multiple regression coefficients on cubic (Q=3) splines of Xt , and Xt 

relative to knot location tk.  The notation ( Xt - tk ) +Q  indicates that the cubic spline of Xt 

relative to knot location tk is included if the difference is positive, otherwise it is zero.  

 

 From (3) it is clear that the addition of a knot can be viewed as adding the 

corresponding variable   ( Xt - tk ) +Q .  A forward and backward stepwise search is 

incorporated in the MARS algorithm, with the forward step purposely over-fitting the 

data. Insignificant terms are deleted on the backward step of the routine.  

 

 Here, model selection is based on the generalized cross-validation (GCV) 

criterion of Craven and Wahba (1979), although in practice, any model selection criterion 

could be used.  The GCV can be expressed as 

 

                               N 

   GCV  =   (1/N)    Σ  { [ Yt  -   fM (Xt) ]2   /  [  1 - C(M)/N ]2  }         (4) 

                              t=1 

 

where there are N observations, and the numerator measures the lack of fit on the M basis 

function model fM (Xt). This term corresponds to the sum of squared residuals from the 
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fitted model. The denominator contains a penalty for model complexity, C(M), which is 

related to the number of parameters estimated in the model. 

 

 MARS estimates can most readily be interpreted from an ANOVA (analysis of 

variance) representation of the model, where the fitted function is expressed as a linear 

combination of additive basis functions in single variables and interactions between 

variables.   MARS  provides graphical plots which illustrate the optimal transformation of 

the variables chosen by the algorithm, much like the ACE (alternating conditional 

expectations) algorithm of  Brieman and Friedman (1985).3   As part of the MARS 

output, the relative contribution of each variable is determined, as are estimates of the 

model's adjusted R-squared given that a particular ANOVA function (variable) has been 

omitted from the model.  This assists in interpreting the significance of each ANOVA 

function.4   

  

 MARS models were estimated for the change in the inflation rate over a number 

of policy horizons: three years relative to three months; three years relative to six months; 

three years relative to twelve month; five years relative to three months; five years 

                                                 
3  The ACE approach to modeling finds the non-linear transformation of the predictors which 
maximizes the correlation between the dependent variable and the transformed predictors. A plot of the 
transformed series against the dependent variable is sometimes helpful in identifying a functional form to 
be used in parametric modeling.  Hallman (1990) and Granger and Hallman (1991) employed ACE to 
examine non-linear cointegration. 
 
 
4  Since there is only one predictor in this model there is no question of which variables to allow to 
interact.  Subsequent work incorporating additional factors into an inflation forecasting equation may 
demonstrate the sensitivity of the MARS algorithm to the degree of variable interaction allowed. 
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relative to six months; five years relative to twelve months; and finally ten years relative 

to the three-, six- and twelve-month horizons.   

 

 A large amount of output is produced when fitting each specification and it would 

be of little merit to present the results of each model.  For the sake of brevity, only three 

of the estimated models will be discussed here (all figures and models may be obtained 

from the author on request). Of primary interest are the plots of the optimal 

transformation of the information in the yield curve as it relates to changes in the 

inflation rate.  For example, Figure 1 presents the transformed spread between three year 

and three month interest rates and the associated changes in the inflation rate between 

three months and three years.  The estimated thresholds in the spread are at 0.22 percent 

and –0.61 percent, respectively.  As the spread rises above 0.22 percent, the inflation rate 

three years hence will rise linearly relative to the inflation rate in three months time.  

Alternatively, a tightening of the spread over this time horizon will reduce the inflation 

rate, but only until the spread reaches 0.22 percent.  As the spread falls and is between  

–0.61 percent and 0.22 percent, there is a significant reduction in inflation over this 

policy horizon.  Values of the spread below –0.61 percent (ie, an inverted yield curve) do 

not appear to be able to reduce further the three-year inflation rate. 

 

 Figure 2 presents the five year – three month estimates, with estimated thresholds 

at 0.22 percent and –0.82 percent.  As in the three year - three month horizon, the 

relationship between the change in the inflation rate and the yield spread is non-linear. 

Spreads below the lower threshold have little effect on the change in the inflation rate. A 
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substantial tightening is necessary to reduce inflation when the yield curve is upward 

sloping, but an inverted yield curve demonstrates that inflation can fall substantially if the 

short term rate changes marginally.  Note that the upper threshold effect over the five 

year horizon is identical to that estimated for the three year time frame. 

 

 Finally, Figure 3 plots the optimal transform between the ten year and three 

month specifications. It is clear that there is little impact of a change in the slope of the 

term structure on the long-run inflation rate. Estimated thresholds are at 0.28 percent and 

–1.27 percent, with linear fits appearing to rotate at the knot locations.  One might expect 

this result over such a long time frame given that there are a myriad of other factors 

contributing to the evolution of inflation, which are left unexplained by this approach to 

inflation forecasting. 

 
  
3. CONCLUSIONS 

 
 

Common to each figure is a non-linear transform which appears to indicate that a 

tightening of the yield spread will reduce the inflation rate over a three year to five year 

horizon relative to its value in three months.  A substantial tightening may be required to 

reduce inflation when the yield curve is upward sloping. Inverted yield curves appear to 

provide significant reductions in inflation for small changes in the yield spread.  Common 

estimates of an upper threshold for the spread of between 0.22 and 0.28 percent suggest 

there is a relatively robust non-linearity which needs to be considered when adjusting 

interest rate targets to achieve gains in inflation stability. 
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Subsequent work might incorporate other factors contributing to changes in 

inflation (commodity prices, changes in regulated prices) to determine the degree to 

which monetary policy is capable of reducing inflation to a low and stable long-run path.  

These findings suggest that non-linear non-parametric methods should be added to the 

applied econometrician’s toolkit. 
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Figure 1: Yield Spread and Inflation Changes:  Three Years vs Three Months 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 14

 

 
 
 
 
 
 
Figure 2: Yield Spread and Inflation Changes: Five Years vs Three Months 
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Figure 3: Yield Spread and Inflation Changes: Ten Years vs Three Months 
 


